OMICmAge: An Integrative Multi-Omics Approach to Quantify Biological Age With Electronic Medical Records
bioRxiv – Jessica Lasky-Su, et al.
This study helped develop OMICmAge, integrating DNA methylation and multi-omics data to quantify biological age. The Proteograph platform was leveraged to enhance protein detection and provide deep insights into the aging process.
Abstract
Biological aging is a multifactorial process involving complex interactions of cellular and biochemical processes that is reflected in omic profiles. Using common clinical laboratory measures in ~30,000 individuals from the MGB-Biobank, we developed a robust, predictive biological aging phenotype, EMRAge, that balances clinical biomarkers with overall mortality risk and can be broadly recapitulated across EMRs. We then applied elastic-net regression to model EMRAge with DNA-methylation (DNAm) and multiple omics, generating DNAmEMRAge and OMICmAge, respectively. Both biomarkers demonstrated strong associations with chronic diseases and mortality that outperform current biomarkers across our discovery (MGB-ABC, n=3,451) and validation (TruDiagnostic, n=12,666) cohorts. Through the use of epigenetic biomarker proxies, OMICmAge has the unique advantage of expanding the predictive search space to include epigenomic, proteomic, metabolomic, and clinical data while distilling this in a measure with DNAm alone, providing opportunities to identify clinically-relevant interconnections central to the aging process.
Discover Seer Technology Access Programs & Services
Easily explore the protein universe with Seer. Our service providers and in-house Seer Technology Access Center (STAC) empower your research, accelerating results and deciphering the proteome at unprecedented depth and scale. Answer biology’s most challenging questions — faster.
DOI: 10.1101/2023.10.16.562114